算法-堆排序

堆排序是内部排序中选择排序的一种。堆排序是一种树形选择排序,是对选择排序的有效改进。

堆是一种具有n个元素的序列,当且仅当满足 ki<=k2i, ki<= k2i+1,或者反过来。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。
然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大的元素。
依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。

  1. 调整小堆顶的方法

1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。

2)将根结点与左、右子树中较小元素的进行交换。

3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).

4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).

5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。

  1. 建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。

2)筛选从第个结点为根的子树开始,该子树成为堆。

3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。

算法思想

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。
然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大的元素。
依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。

空间复杂度

因为堆排序是就地排序,空间复杂度为常数:O(1)

时间复杂度

堆排序的时间复杂度,主要在初始化堆过程和每次选取最大数后重新建堆的过程;

初始化建堆过程时间:O(n)

推算过程:

首先要理解怎么计算这个堆化过程所消耗的时间,可以直接画图去理解;

假设高度为k,则从倒数第二层右边的节点开始,这一层的节点都要执行子节点比较然后交换(如果顺序是对的就不用交换);倒数第三层呢,则会选择其子节点进行比较和交换,如果没交换就可以不用再执行下去了。如果交换了,那么又要选择一支子树进行比较和交换;

那么总的时间计算为:s = 2^( i - 1 ) * ( k - i );其中 i 表示第几层,2^( i - 1) 表示该层上有多少个元素,( k - i) 表示子树上要比较的次数,如果在最差的条件下,就是比较次数后还要交换;因为这个是常数,所以提出来后可以忽略;

S = 2^(k-2) * 1 + 2^(k-3)2…..+2(k-2)+2^(0)*(k-1) ===> 因为叶子层不用交换,所以i从 k-1 开始到 1;
这个等式求解,我想高中已经会了:等式左右乘上2,然后和原来的等式相减,就变成了:
S = 2^(k - 1) + 2^(k - 2) + 2^(k - 3) ….. + 2 - (k-1)
除最后一项外,就是一个等比数列了,直接用求和公式:S = { a1[ 1- (q^n) ] } / (1-q);
S = 2^k -k -1;又因为k为完全二叉树的深度,所以 (2^k) <= n < (2^k -1 ),总之可以认为:k = logn (实际计算得到应该是 log(n+1) < k <= logn );
综上所述得到:S = n - longn -1,所以时间复杂度为:O(n)
更改堆元素后重建堆时间:O(nlogn)
推算过程:
1、循环 n -1 次,每次都是从根节点往下循环查找,所以每一次时间是 logn,总时间:logn(n-1) = nlogn - logn ;
综上所述:堆排序的时间复杂度为:O(nlogn)

算法实现思想

堆排序的大概步骤如下:

  1. 构建最大堆。
  2. 选择顶,并与第0位置元素交换
  3. 由于步骤2的的交换可能破环了最大堆的性质,第0不再是最大元素,需要调用maxHeap调整堆(沉降法),如果需要重复步骤2

java实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
public static void heapSort(int[] array) {  
if (array == null || array.length <= 1) {
return;
}

buildMaxHeap(array);

for (int i = array.length - 1; i >= 1; i--) {
ArrayUtils.exchangeElements(array, 0, i);

maxHeap(array, i, 0);
}
}

private static void buildMaxHeap(int[] array) {
if (array == null || array.length <= 1) {
return;
}

int half = array.length / 2;
for (int i = half; i >= 0; i--) {
maxHeap(array, array.length, i);
}
}
private static void maxHeap(int[] array, int heapSize, int index) {
int left = index * 2 + 1;
int right = index * 2 + 2;

int largest = index;
if (left < heapSize && array[left] > array[index]) {
largest = left;
}

if (right < heapSize && array[right] > array[largest]) {
largest = right;
}

if (index != largest) {
ArrayUtils.exchangeElements(array, index, largest);

maxHeap(array, heapSize, largest);
}
}
public static void exchangeElements(int[] array, int index1, int index2) {
int temp = array[index1];
array[index1] = array[index2];
array[index2] = temp;
}

c实现

python实现