1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
| /** * SparseArrays map integers to Objects. Unlike a normal array of Objects, * there can be gaps in the indices. It is intended to be more memory efficient * than using a HashMap to map Integers to Objects, both because it avoids * auto-boxing keys and its data structure doesn't rely on an extra entry object * for each mapping. * * <p>Note that this container keeps its mappings in an array data structure, * using a binary search to find keys. The implementation is not intended to be appropriate for * data structures * that may contain large numbers of items. It is generally slower than a traditional * HashMap, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.</p> * * <p>To help with performance, the container includes an optimization when removing * keys: instead of compacting its array immediately, it leaves the removed entry marked * as deleted. The entry can then be re-used for the same key, or compacted later in * a single garbage collection step of all removed entries. This garbage collection will * need to be performed at any time the array needs to be grown or the the map size or * entry values are retrieved.</p> * * <p>It is possible to iterate over the items in this container using * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using * <code>keyAt(int)</code> with ascending values of the index will return the * keys in ascending order, or the values corresponding to the keys in ascending * order in the case of <code>valueAt(int)</code>.</p> */ public class SparseArray<E> implements Cloneable { private static final Object DELETED = new Object(); private boolean mGarbage = false;
private int[] mKeys; private Object[] mValues; private int mSize;
/** * Creates a new SparseArray containing no mappings. */ public SparseArray() { this(10); }
/** * Creates a new SparseArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. If you supply an initial capacity of 0, the * sparse array will be initialized with a light-weight representation * not requiring any additional array allocations. */ public SparseArray(int initialCapacity) { if (initialCapacity == 0) { mKeys = EmptyArray.INT; mValues = EmptyArray.OBJECT; } else { mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity); mKeys = new int[mValues.length]; } mSize = 0; }
@Override @SuppressWarnings("unchecked") public SparseArray<E> clone() { SparseArray<E> clone = null; try { clone = (SparseArray<E>) super.clone(); clone.mKeys = mKeys.clone(); clone.mValues = mValues.clone(); } catch (CloneNotSupportedException cnse) { /* ignore */ } return clone; }
/** * Gets the Object mapped from the specified key, or <code>null</code> * if no such mapping has been made. */ public E get(int key) { return get(key, null); }
/** * Gets the Object mapped from the specified key, or the specified Object * if no such mapping has been made. */ @SuppressWarnings("unchecked") public E get(int key, E valueIfKeyNotFound) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) { return valueIfKeyNotFound; } else { return (E) mValues[i]; } }
/** * Removes the mapping from the specified key, if there was any. */ public void delete(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) { if (mValues[i] != DELETED) { mValues[i] = DELETED; mGarbage = true; } } }
/** * @hide * Removes the mapping from the specified key, if there was any, returning the old value. */ public E removeReturnOld(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) { if (mValues[i] != DELETED) { final E old = (E) mValues[i]; mValues[i] = DELETED; mGarbage = true; return old; } } return null; }
/** * Alias for {@link #delete(int)}. */ public void remove(int key) { delete(key); }
/** * Removes the mapping at the specified index. * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */ public void removeAt(int index) { if (mValues[index] != DELETED) { mValues[index] = DELETED; mGarbage = true; } }
/** * Remove a range of mappings as a batch. * * @param index Index to begin at * @param size Number of mappings to remove * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */ public void removeAtRange(int index, int size) { final int end = Math.min(mSize, index + size); for (int i = index; i < end; i++) { removeAt(i); } }
private void gc() { // Log.e("SparseArray", "gc start with " + mSize);
int n = mSize; int o = 0; int[] keys = mKeys; Object[] values = mValues;
for (int i = 0; i < n; i++) { Object val = values[i];
if (val != DELETED) { if (i != o) { keys[o] = keys[i]; values[o] = val; values[i] = null; }
o++; } }
mGarbage = false; mSize = o;
// Log.e("SparseArray", "gc end with " + mSize); }
/** * Adds a mapping from the specified key to the specified value, * replacing the previous mapping from the specified key if there * was one. */ public void put(int key, E value) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) { mValues[i] = value; } else { i = ~i;
if (i < mSize && mValues[i] == DELETED) { mKeys[i] = key; mValues[i] = value; return; }
if (mGarbage && mSize >= mKeys.length) { gc();
// Search again because indices may have changed. i = ~ContainerHelpers.binarySearch(mKeys, mSize, key); }
mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key); mValues = GrowingArrayUtils.insert(mValues, mSize, i, value); mSize++; } }
/** * Returns the number of key-value mappings that this SparseArray * currently stores. */ public int size() { if (mGarbage) { gc(); }
return mSize; }
/** * Given an index in the range <code>0...size()-1</code>, returns * the key from the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>The keys corresponding to indices in ascending order are guaranteed to * be in ascending order, e.g., <code>keyAt(0)</code> will return the * smallest key and <code>keyAt(size()-1)</code> will return the largest * key.</p> * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */ public int keyAt(int index) { if (mGarbage) { gc(); }
return mKeys[index]; }
/** * Given an index in the range <code>0...size()-1</code>, returns * the value from the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>The values corresponding to indices in ascending order are guaranteed * to be associated with keys in ascending order, e.g., * <code>valueAt(0)</code> will return the value associated with the * smallest key and <code>valueAt(size()-1)</code> will return the value * associated with the largest key.</p> * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */ @SuppressWarnings("unchecked") public E valueAt(int index) { if (mGarbage) { gc(); }
return (E) mValues[index]; }
/** * Given an index in the range <code>0...size()-1</code>, sets a new * value for the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined.</p> */ public void setValueAt(int index, E value) { if (mGarbage) { gc(); }
mValues[index] = value; }
/** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */ public int indexOfKey(int key) { if (mGarbage) { gc(); }
return ContainerHelpers.binarySearch(mKeys, mSize, key); }
/** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. * <p>Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. * <p>Note also that unlike most collections' {@code indexOf} methods, * this method compares values using {@code ==} rather than {@code equals}. */ public int indexOfValue(E value) { if (mGarbage) { gc(); }
for (int i = 0; i < mSize; i++) { if (mValues[i] == value) { return i; } }
return -1; }
/** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. * <p>Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. * <p>Note also that this method uses {@code equals} unlike {@code indexOfValue}. * @hide */ public int indexOfValueByValue(E value) { if (mGarbage) { gc(); }
for (int i = 0; i < mSize; i++) { if (value == null) { if (mValues[i] == null) { return i; } } else { if (value.equals(mValues[i])) { return i; } } } return -1; }
/** * Removes all key-value mappings from this SparseArray. */ public void clear() { int n = mSize; Object[] values = mValues;
for (int i = 0; i < n; i++) { values[i] = null; }
mSize = 0; mGarbage = false; }
/** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */ public void append(int key, E value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; }
if (mGarbage && mSize >= mKeys.length) { gc(); }
mKeys = GrowingArrayUtils.append(mKeys, mSize, key); mValues = GrowingArrayUtils.append(mValues, mSize, value); mSize++; }
/** * {@inheritDoc} * * <p>This implementation composes a string by iterating over its mappings. If * this map contains itself as a value, the string "(this Map)" * will appear in its place. */ @Override public String toString() { if (size() <= 0) { return "{}"; }
StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i=0; i<mSize; i++) { if (i > 0) { buffer.append(", "); } int key = keyAt(i); buffer.append(key); buffer.append('='); Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Map)"); } } buffer.append('}'); return buffer.toString(); } }
|