数据结构-ArrayMap代码分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/**
* ArrayMap is a generic key->value mapping data structure that is
* designed to be more memory efficient than a traditional {@link java.util.HashMap}.
* It keeps its mappings in an array data structure -- an integer array of hash
* codes for each item, and an Object array of the key/value pairs. This allows it to
* avoid having to create an extra object for every entry put in to the map, and it
* also tries to control the growth of the size of these arrays more aggressively
* (since growing them only requires copying the entries in the array, not rebuilding
* a hash map).
*
* <p>Note that this implementation is not intended to be appropriate for data structures
* that may contain large numbers of items. It is generally slower than a traditional
* HashMap, since lookups require a binary search and adds and removes require inserting
* and deleting entries in the array. For containers holding up to hundreds of items,
* the performance difference is not significant, less than 50%.</p>
*
* <p>Because this container is intended to better balance memory use, unlike most other
* standard Java containers it will shrink its array as items are removed from it. Currently
* you have no control over this shrinking -- if you set a capacity and then remove an
* item, it may reduce the capacity to better match the current size. In the future an
* explicit call to set the capacity should turn off this aggressive shrinking behavior.</p>
*
*
* arraymap是一个key2value的map对象,设计的比传统的hashmap在内存方面更有效果
* 它将键值对保存在数组结构中,每一个键值对拥有一个hash值对应,用一个object数组保存这个键值对
* 因此避免了对每一个加入这个map的实体创建一个额外的空间。并且它也尝试更有倾略性的控制这些数组的增长
* 每一次增长只需要拷贝一次数组里面的对象,不需要重构hash的表
*
* 注意,这个数据结构对大数量的对象并不合适,他会比hashmap慢好多,因为查找需要二分查找,并且add和remove操作需要插入和删除数组里面的对象
* 对于拥有接近上百个对象的容器,arraymap的表现不出色,比一半以上的容器弱
*
* 因为这个容器是为了更好的内存占用而设计的,不像别的标准的java容器,arraymap在移除对象的时候,会缩小他的数组
* 目前开发者对这个缩小的行为无法操作,如果开发者设置了一个容量,然后移除一个对象,arraymap将会减少容量
* 以后设置一个容量,可以关闭这个倾略性的收缩行为。
*/
public final class ArrayMap<K, V> implements Map<K, V> {
private static final boolean DEBUG = false;
private static final String TAG = "ArrayMap";

/**
* Attempt to spot concurrent modifications to this data structure.
*
* It's best-effort, but any time we can throw something more diagnostic than an
* ArrayIndexOutOfBoundsException deep in the ArrayMap internals it's going to
* save a lot of development time.
*
* Good times to look for CME include after any allocArrays() call and at the end of
* functions that change mSize (put/remove/clear).
*/
private static final boolean CONCURRENT_MODIFICATION_EXCEPTIONS = true;

/**
* The minimum amount by which the capacity of a ArrayMap will increase.
* This is tuned to be relatively space-efficient.
* arraymap的容量增加,如果不处理的话,最小将是下面这个参数,
*/
private static final int BASE_SIZE = 4;

/**
* Maximum number of entries to have in array caches.
*/
private static final int CACHE_SIZE = 10;

/**
* Special hash array value that indicates the container is immutable.
*/
static final int[] EMPTY_IMMUTABLE_INTS = new int[0];

/**
* @hide Special immutable empty ArrayMap.
*/
public static final ArrayMap EMPTY = new ArrayMap<>(-1);

/**
* Caches of small array objects to avoid spamming garbage. The cache
* Object[] variable is a pointer to a linked list of array objects.
* The first entry in the array is a pointer to the next array in the
* list; the second entry is a pointer to the int[] hash code array for it.
*/
static Object[] mBaseCache;
static int mBaseCacheSize;
static Object[] mTwiceBaseCache;
static int mTwiceBaseCacheSize;

final boolean mIdentityHashCode;
int[] mHashes;
Object[] mArray;
int mSize;
MapCollections<K, V> mCollections;

private static int binarySearchHashes(int[] hashes, int N, int hash) {
try {
return ContainerHelpers.binarySearch(hashes, N, hash);
} catch (ArrayIndexOutOfBoundsException e) {
if (CONCURRENT_MODIFICATION_EXCEPTIONS) {
throw new ConcurrentModificationException();
} else {
throw e; // the cache is poisoned at this point, there's not much we can do
}
}
}

int indexOf(Object key, int hash) {
final int N = mSize;

// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}

int index = binarySearchHashes(mHashes, N, hash);

// If the hash code wasn't found, then we have no entry for this key.
if (index < 0) {
return index;
}

// If the key at the returned index matches, that's what we want.
if (key.equals(mArray[index<<1])) {
return index;
}

// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == hash; end++) {
if (key.equals(mArray[end << 1])) return end;
}

// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) {
if (key.equals(mArray[i << 1])) return i;
}

// Key not found -- return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}

int indexOfNull() {
final int N = mSize;

// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}

int index = binarySearchHashes(mHashes, N, 0);

// If the hash code wasn't found, then we have no entry for this key.
if (index < 0) {
return index;
}

// If the key at the returned index matches, that's what we want.
if (null == mArray[index<<1]) {
return index;
}

// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == 0; end++) {
if (null == mArray[end << 1]) return end;
}

// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) {
if (null == mArray[i << 1]) return i;
}

// Key not found -- return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}

private void allocArrays(final int size) {
if (mHashes == EMPTY_IMMUTABLE_INTS) {
throw new UnsupportedOperationException("ArrayMap is immutable");
}
if (size == (BASE_SIZE*2)) {
synchronized (ArrayMap.class) {
if (mTwiceBaseCache != null) {
final Object[] array = mTwiceBaseCache;
mArray = array;
mTwiceBaseCache = (Object[])array[0];
mHashes = (int[])array[1];
array[0] = array[1] = null;
mTwiceBaseCacheSize--;
if (DEBUG) Log.d(TAG, "Retrieving 2x cache " + mHashes
+ " now have " + mTwiceBaseCacheSize + " entries");
return;
}
}
} else if (size == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCache != null) {
final Object[] array = mBaseCache;
mArray = array;
mBaseCache = (Object[])array[0];
mHashes = (int[])array[1];
array[0] = array[1] = null;
mBaseCacheSize--;
if (DEBUG) Log.d(TAG, "Retrieving 1x cache " + mHashes
+ " now have " + mBaseCacheSize + " entries");
return;
}
}
}

mHashes = new int[size];
mArray = new Object[size<<1];
}

private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
if (hashes.length == (BASE_SIZE*2)) {
synchronized (ArrayMap.class) {
if (mTwiceBaseCacheSize < CACHE_SIZE) {
array[0] = mTwiceBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mTwiceBaseCache = array;
mTwiceBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 2x cache " + array
+ " now have " + mTwiceBaseCacheSize + " entries");
}
}
} else if (hashes.length == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCacheSize < CACHE_SIZE) {
array[0] = mBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mBaseCache = array;
mBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 1x cache " + array
+ " now have " + mBaseCacheSize + " entries");
}
}
}
}

/**
* Create a new empty ArrayMap. The default capacity of an array map is 0, and
* will grow once items are added to it.
* 默认的构造函数,容量为0
*/
public ArrayMap() {
this(0, false);
}

/**
* Create a new ArrayMap with a given initial capacity.
*/
public ArrayMap(int capacity) {
this(capacity, false);
}

/** {@hide} */
public ArrayMap(int capacity, boolean identityHashCode) {
mIdentityHashCode = identityHashCode;

// If this is immutable, use the sentinal EMPTY_IMMUTABLE_INTS
// instance instead of the usual EmptyArray.INT. The reference
// is checked later to see if the array is allowed to grow.
if (capacity < 0) {
mHashes = EMPTY_IMMUTABLE_INTS;
mArray = EmptyArray.OBJECT;
} else if (capacity == 0) {
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
} else {
allocArrays(capacity);
}
mSize = 0;
}

/**
* Create a new ArrayMap with the mappings from the given ArrayMap.
*/
public ArrayMap(ArrayMap<K, V> map) {
this();
if (map != null) {
putAll(map);
}
}

/**
* Make the array map empty. All storage is released.
*/
@Override
public void clear() {
if (mSize > 0) {
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
final int osize = mSize;
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
mSize = 0;
freeArrays(ohashes, oarray, osize);
}
if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize > 0) {
throw new ConcurrentModificationException();
}
}

/**
* @hide
* Like {@link #clear}, but doesn't reduce the capacity of the ArrayMap.
*/
public void erase() {
if (mSize > 0) {
final int N = mSize<<1;
final Object[] array = mArray;
for (int i=0; i<N; i++) {
array[i] = null;
}
mSize = 0;
}
}

/**
* Ensure the array map can hold at least <var>minimumCapacity</var>
* items.
*/
public void ensureCapacity(int minimumCapacity) {
final int osize = mSize;
if (mHashes.length < minimumCapacity) {
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(minimumCapacity);
if (mSize > 0) {
System.arraycopy(ohashes, 0, mHashes, 0, osize);
System.arraycopy(oarray, 0, mArray, 0, osize<<1);
}
freeArrays(ohashes, oarray, osize);
}
if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize != osize) {
throw new ConcurrentModificationException();
}
}

/**
* Check whether a key exists in the array.
*
* @param key The key to search for.
* @return Returns true if the key exists, else false.
*/
@Override
public boolean containsKey(Object key) {
return indexOfKey(key) >= 0;
}

/**
* Returns the index of a key in the set.
*
* @param key The key to search for.
* @return Returns the index of the key if it exists, else a negative integer.
*/
public int indexOfKey(Object key) {
return key == null ? indexOfNull()
: indexOf(key, mIdentityHashCode ? System.identityHashCode(key) : key.hashCode());
}

int indexOfValue(Object value) {
final int N = mSize*2;
final Object[] array = mArray;
if (value == null) {
for (int i=1; i<N; i+=2) {
if (array[i] == null) {
return i>>1;
}
}
} else {
for (int i=1; i<N; i+=2) {
if (value.equals(array[i])) {
return i>>1;
}
}
}
return -1;
}

/**
* Check whether a value exists in the array. This requires a linear search
* through the entire array.
*
* @param value The value to search for.
* @return Returns true if the value exists, else false.
*/
@Override
public boolean containsValue(Object value) {
return indexOfValue(value) >= 0;
}

/**
* Retrieve a value from the array.
* @param key The key of the value to retrieve.
* @return Returns the value associated with the given key,
* or null if there is no such key.
*/
@Override
public V get(Object key) {
final int index = indexOfKey(key);
return index >= 0 ? (V)mArray[(index<<1)+1] : null;
}

/**
* Return the key at the given index in the array.
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @return Returns the key stored at the given index.
*/
public K keyAt(int index) {
return (K)mArray[index << 1];
}

/**
* Return the value at the given index in the array.
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @return Returns the value stored at the given index.
*/
public V valueAt(int index) {
return (V)mArray[(index << 1) + 1];
}

/**
* Set the value at a given index in the array.
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @param value The new value to store at this index.
* @return Returns the previous value at the given index.
*/
public V setValueAt(int index, V value) {
index = (index << 1) + 1;
V old = (V)mArray[index];
mArray[index] = value;
return old;
}

/**
* Return true if the array map contains no items.
*/
@Override
public boolean isEmpty() {
return mSize <= 0;
}

/**
* Add a new value to the array map.
* @param key The key under which to store the value. If
* this key already exists in the array, its value will be replaced.
* @param value The value to store for the given key.
* @return Returns the old value that was stored for the given key, or null if there
* was no such key.
* add操作,对key做取hash操作
* 其取hash操作就是默认的System.identityHashCode(key),也就是不管用户是否复写,始终是object的hashcode方法
* 取位置的操作在indexof(key,hash)里面
* 当获得的index大于等于0会做插入操作,否则取反,之后根据存储的容量和hash数组的长度做对比
* 若存储的容量大于等于hash数组的长度,将其与BASE_SIZE做比较,如果是2倍以上,则在3/2 * size的地方插入,否则一倍以上则在BASE_SIZE * 2处插入,否则在BASE_SIZE处插入
* 存储的容量小于hash的长度,则扩容
* 此处操作有点疑惑
*/
@Override
public V put(K key, V value) {
final int osize = mSize;
final int hash;
int index;
if (key == null) {
hash = 0;
index = indexOfNull();
} else {
hash = mIdentityHashCode ? System.identityHashCode(key) : key.hashCode();
index = indexOf(key, hash);
}
if (index >= 0) {
index = (index<<1) + 1;
final V old = (V)mArray[index];
mArray[index] = value;
return old;
}

index = ~index;
if (osize >= mHashes.length) {
final int n = osize >= (BASE_SIZE*2) ? (osize+(osize>>1))
: (osize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);

if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);

final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);

if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}

if (mHashes.length > 0) {
if (DEBUG) Log.d(TAG, "put: copy 0-" + osize + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
System.arraycopy(oarray, 0, mArray, 0, oarray.length);
}

freeArrays(ohashes, oarray, osize);
}

if (index < osize) {
if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (osize-index)
+ " to " + (index+1));
System.arraycopy(mHashes, index, mHashes, index + 1, osize - index);
System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
}

if (CONCURRENT_MODIFICATION_EXCEPTIONS) {
if (osize != mSize || index >= mHashes.length) {
throw new ConcurrentModificationException();
}
}
mHashes[index] = hash;
mArray[index<<1] = key;
mArray[(index<<1)+1] = value;
mSize++;
return null;
}

/**
* Special fast path for appending items to the end of the array without validation.
* The array must already be large enough to contain the item.
* @hide
*/
public void append(K key, V value) {
int index = mSize;
final int hash = key == null ? 0
: (mIdentityHashCode ? System.identityHashCode(key) : key.hashCode());
if (index >= mHashes.length) {
throw new IllegalStateException("Array is full");
}
if (index > 0 && mHashes[index-1] > hash) {
RuntimeException e = new RuntimeException("here");
e.fillInStackTrace();
Log.w(TAG, "New hash " + hash
+ " is before end of array hash " + mHashes[index-1]
+ " at index " + index + " key " + key, e);
put(key, value);
return;
}
mSize = index+1;
mHashes[index] = hash;
index <<= 1;
mArray[index] = key;
mArray[index+1] = value;
}

/**
* The use of the {@link #append} function can result in invalid array maps, in particular
* an array map where the same key appears multiple times. This function verifies that
* the array map is valid, throwing IllegalArgumentException if a problem is found. The
* main use for this method is validating an array map after unpacking from an IPC, to
* protect against malicious callers.
* @hide
*/
public void validate() {
final int N = mSize;
if (N <= 1) {
// There can't be dups.
return;
}
int basehash = mHashes[0];
int basei = 0;
for (int i=1; i<N; i++) {
int hash = mHashes[i];
if (hash != basehash) {
basehash = hash;
basei = i;
continue;
}
// We are in a run of entries with the same hash code. Go backwards through
// the array to see if any keys are the same.
final Object cur = mArray[i<<1];
for (int j=i-1; j>=basei; j--) {
final Object prev = mArray[j<<1];
if (cur == prev) {
throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur);
}
if (cur != null && prev != null && cur.equals(prev)) {
throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur);
}
}
}
}

/**
* Perform a {@link #put(Object, Object)} of all key/value pairs in <var>array</var>
* @param array The array whose contents are to be retrieved.
*/
public void putAll(ArrayMap<? extends K, ? extends V> array) {
final int N = array.mSize;
ensureCapacity(mSize + N);
if (mSize == 0) {
if (N > 0) {
System.arraycopy(array.mHashes, 0, mHashes, 0, N);
System.arraycopy(array.mArray, 0, mArray, 0, N<<1);
mSize = N;
}
} else {
for (int i=0; i<N; i++) {
put(array.keyAt(i), array.valueAt(i));
}
}
}

/**
* Remove an existing key from the array map.
* @param key The key of the mapping to remove.
* @return Returns the value that was stored under the key, or null if there
* was no such key.
*/
@Override
public V remove(Object key) {
final int index = indexOfKey(key);
if (index >= 0) {
return removeAt(index);
}

return null;
}

/**
* Remove the key/value mapping at the given index.
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @return Returns the value that was stored at this index.
*/
public V removeAt(int index) {
final Object old = mArray[(index << 1) + 1];
final int osize = mSize;
final int nsize;
if (osize <= 1) {
// Now empty.
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0");
freeArrays(mHashes, mArray, osize);
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
nsize = 0;
} else {
nsize = osize - 1;
if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
// Shrunk enough to reduce size of arrays. We don't allow it to
// shrink smaller than (BASE_SIZE*2) to avoid flapping between
// that and BASE_SIZE.
final int n = osize > (BASE_SIZE*2) ? (osize + (osize>>1)) : (BASE_SIZE*2);

if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);

final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);

if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}

if (index > 0) {
if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, index);
System.arraycopy(oarray, 0, mArray, 0, index << 1);
}
if (index < nsize) {
if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + nsize
+ " to " + index);
System.arraycopy(ohashes, index + 1, mHashes, index, nsize - index);
System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
(nsize - index) << 1);
}
} else {
if (index < nsize) {
if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + nsize
+ " to " + index);
System.arraycopy(mHashes, index + 1, mHashes, index, nsize - index);
System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
(nsize - index) << 1);
}
mArray[nsize << 1] = null;
mArray[(nsize << 1) + 1] = null;
}
}
if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) {
throw new ConcurrentModificationException();
}
mSize = nsize;
return (V)old;
}

/**
* Return the number of items in this array map.
*/
@Override
public int size() {
return mSize;
}

/**
* {@inheritDoc}
*
* <p>This implementation returns false if the object is not a map, or
* if the maps have different sizes. Otherwise, for each key in this map,
* values of both maps are compared. If the values for any key are not
* equal, the method returns false, otherwise it returns true.
*/
@Override
public boolean equals(Object object) {
if (this == object) {
return true;
}
if (object instanceof Map) {
Map<?, ?> map = (Map<?, ?>) object;
if (size() != map.size()) {
return false;
}

try {
for (int i=0; i<mSize; i++) {
K key = keyAt(i);
V mine = valueAt(i);
Object theirs = map.get(key);
if (mine == null) {
if (theirs != null || !map.containsKey(key)) {
return false;
}
} else if (!mine.equals(theirs)) {
return false;
}
}
} catch (NullPointerException ignored) {
return false;
} catch (ClassCastException ignored) {
return false;
}
return true;
}
return false;
}

/**
* {@inheritDoc}
*/
@Override
public int hashCode() {
final int[] hashes = mHashes;
final Object[] array = mArray;
int result = 0;
for (int i = 0, v = 1, s = mSize; i < s; i++, v+=2) {
Object value = array[v];
result += hashes[i] ^ (value == null ? 0 : value.hashCode());
}
return result;
}

/**
* {@inheritDoc}
*
* <p>This implementation composes a string by iterating over its mappings. If
* this map contains itself as a key or a value, the string "(this Map)"
* will appear in its place.
*/
@Override
public String toString() {
if (isEmpty()) {
return "{}";
}

StringBuilder buffer = new StringBuilder(mSize * 28);
buffer.append('{');
for (int i=0; i<mSize; i++) {
if (i > 0) {
buffer.append(", ");
}
Object key = keyAt(i);
if (key != this) {
buffer.append(key);
} else {
buffer.append("(this Map)");
}
buffer.append('=');
Object value = valueAt(i);
if (value != this) {
buffer.append(value);
} else {
buffer.append("(this Map)");
}
}
buffer.append('}');
return buffer.toString();
}

// ------------------------------------------------------------------------
// Interop with traditional Java containers. Not as efficient as using
// specialized collection APIs.
// ------------------------------------------------------------------------

private MapCollections<K, V> getCollection() {
if (mCollections == null) {
mCollections = new MapCollections<K, V>() {
@Override
protected int colGetSize() {
return mSize;
}

@Override
protected Object colGetEntry(int index, int offset) {
return mArray[(index<<1) + offset];
}

@Override
protected int colIndexOfKey(Object key) {
return indexOfKey(key);
}

@Override
protected int colIndexOfValue(Object value) {
return indexOfValue(value);
}

@Override
protected Map<K, V> colGetMap() {
return ArrayMap.this;
}

@Override
protected void colPut(K key, V value) {
put(key, value);
}

@Override
protected V colSetValue(int index, V value) {
return setValueAt(index, value);
}

@Override
protected void colRemoveAt(int index) {
removeAt(index);
}

@Override
protected void colClear() {
clear();
}
};
}
return mCollections;
}

/**
* Determine if the array map contains all of the keys in the given collection.
* @param collection The collection whose contents are to be checked against.
* @return Returns true if this array map contains a key for every entry
* in <var>collection</var>, else returns false.
*/
public boolean containsAll(Collection<?> collection) {
return MapCollections.containsAllHelper(this, collection);
}

/**
* Perform a {@link #put(Object, Object)} of all key/value pairs in <var>map</var>
* @param map The map whose contents are to be retrieved.
*/
@Override
public void putAll(Map<? extends K, ? extends V> map) {
ensureCapacity(mSize + map.size());
for (Map.Entry<? extends K, ? extends V> entry : map.entrySet()) {
put(entry.getKey(), entry.getValue());
}
}

/**
* Remove all keys in the array map that exist in the given collection.
* @param collection The collection whose contents are to be used to remove keys.
* @return Returns true if any keys were removed from the array map, else false.
*/
public boolean removeAll(Collection<?> collection) {
return MapCollections.removeAllHelper(this, collection);
}

/**
* Remove all keys in the array map that do <b>not</b> exist in the given collection.
* @param collection The collection whose contents are to be used to determine which
* keys to keep.
* @return Returns true if any keys were removed from the array map, else false.
*/
public boolean retainAll(Collection<?> collection) {
return MapCollections.retainAllHelper(this, collection);
}

/**
* Return a {@link java.util.Set} for iterating over and interacting with all mappings
* in the array map.
*
* <p><b>Note:</b> this is a very inefficient way to access the array contents, it
* requires generating a number of temporary objects and allocates additional state
* information associated with the container that will remain for the life of the container.</p>
*
* <p><b>Note:</b></p> the semantics of this
* Set are subtly different than that of a {@link java.util.HashMap}: most important,
* the {@link java.util.Map.Entry Map.Entry} object returned by its iterator is a single
* object that exists for the entire iterator, so you can <b>not</b> hold on to it
* after calling {@link java.util.Iterator#next() Iterator.next}.</p>
*/
@Override
public Set<Map.Entry<K, V>> entrySet() {
return getCollection().getEntrySet();
}

/**
* Return a {@link java.util.Set} for iterating over and interacting with all keys
* in the array map.
*
* <p><b>Note:</b> this is a fairly inefficient way to access the array contents, it
* requires generating a number of temporary objects and allocates additional state
* information associated with the container that will remain for the life of the container.</p>
*/
@Override
public Set<K> keySet() {
return getCollection().getKeySet();
}

/**
* Return a {@link java.util.Collection} for iterating over and interacting with all values
* in the array map.
*
* <p><b>Note:</b> this is a fairly inefficient way to access the array contents, it
* requires generating a number of temporary objects and allocates additional state
* information associated with the container that will remain for the life of the container.</p>
*/
@Override
public Collection<V> values() {
return getCollection().getValues();
}
}